
Safe Swarm
Preemptive and Rapid Response Countermeasures for Public Safety in the 21st Century

Heather Kemp
University of Iowa
Iowa City, Iowa

heather-kemp@uiowa.edu

Theo Linnemann
University of Iowa
Iowa City, Iowa

theo-linnemann@uiowa.edu

Yusuf Sermet
University of Iowa
Iowa City, Iowa

muhammedyusuf-sermet@uiowa.
edu

ABSTRACT
This paper describes the Safe Swarm drone application for Mobile
Computing and reviews the method of development and testing for
the system.

CCS CONCEPTS
• Computer systems organization→ Robotics; • Computing
methodologies → Robotic planning; • Hardware → Wireless de-
vices;

KEYWORDS
Drones, wireless networking

ACM Reference Format:
Heather Kemp, Theo Linnemann, and Yusuf Sermet. 2017. Safe Swarm:
Preemptive and Rapid Response Countermeasures for Public Safety in the
21st Century. In Proceedings of (Mobile Computing). ACM, New York, NY,
USA, Article 4, 4 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
In June 2014, SSH and GfK carried about a national survey of 2,000
people in the USA about harassment as people walked the streets.
They found that 65% of women experienced street harassment, 23%
had been sexually assaulted, and 20% had been followed, while 25%
of men reported to being harassed as well. Enter the Safe Swarm, a
fleet of autonomous drones that will deploy to a mobile application
users location as their own on-demand, 24/7/365 personal security
solution. The Safe Swarm drones, at their current capacity, are able
to be stealthily activated with just a simple click of the button. Once
the Summon button has been pressed, the app will automatically
detect the user’s location and provide it to a Safe Swarm drone,
which will be deployed immediately to the location. While the
drone deploys, it will be providing live video feed, as well as a
stored video of its mission to the user. The Safe Swarm drones will
facilitate a feeling of safety for the users as they wait for a ride
or their loved ones to arrive while decreasing the likelihood of an
incident occurring, as perpetrators will be caught through the live
video footage.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Mobile Computing, ,
© 2017 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

2 PROBLEM FORMULATION
To accomplish the task of automatic drone deployment to a user’s
app, the following resources were utilized: a database to store feed-
back information, a client form and deployment form of the Safe
Swarm app,the user’s GPS location, an idle drone, and a screen
recording app. Using these resources and the methodologies de-
scribed in section 4, the following resources to address the problem
were created: a waypoint mission, which is used by the drone to
navigate itself to the user, video feed of the user from the drone
both live streamed and on file, and a dismissible drone companion
for the user.

3 CHALLENGES
In accomplishing our goal, we were not without our fair share of
challenges. The challenges described below were what we deemed
as the most relevant challenges, disregarding the amount of work
put towards solving them.

3.1 Missing Direct Connection
The DJI drone that we worked with relied on a connection between
the drone and a controller which was stationed at the hive. This
being said, there was no way to have a connection between the
drone and the user, who would be calling for the drone from an
undetermined location. With this limitation we still had to perform
the following tasks: presenting the drone video and user location
feedback in real time; detecting when the user started and ended
the mission; and providing consistent location states between the
user’s app and the drone.

3.2 Automated Deployment
In part because of safety concerns, the DJI drone’s default operation
requires user input for takeoff and piloting. Ideally, we would not
have someone stationed at the hive at all times, and so for a suc-
cessful implementation of this project, we needed the drone’s on
standby to be able to automatically deploy to a non-static location
based on what another device, unconnected to the drone itself, says
to do.

3.3 Maintaining Position by User
To provide the safety and video footage our design document spec-
ified, the drone will be required to not only remain positioned by
the user, but also keep its camera focused on the user as well until
the drone is told to return home.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

Mobile Computing, , Heather Kemp, Theo Linnemann, and Yusuf Sermet

4 APPROACH
Before addressing the ways in which these challenges were ad-
dressed, the software design itself must be discussed first. (Fig. 1)
The execution of the software starts with the user on the client
side of the application, who presses the Summon button on the app.
Doing so will send the user’s location, including latitude, longitude,
and altitude, along with other information, to the Firebase data-
base, which will then, having detected the change in its dataset,
will forward this user location data along to the deployment of the
app, which is residing with the drone. This back end constructs a
waypoint mission, which contains the midpoint between the drone
and the user’s location and then the user’s location itself. Once
the waypoint mission is uploaded to the drone, it deploys to the
user’s location, where it will remain until the user presses the End
Mission button. Once again, this button click will send an updated
mission status to the Firebase database, which will then notify the
back end app of the mission termination. This update will call a
method which initiates the return to home procedure for the drone
to land back at the hive.

Figure 1: High Level Software Diagram

4.1 Missing Direct Connection
Two separate tools were used to compensate for the lack of a direct
connection. The first tool is the Firebase database. This database
would store the drone’s status, user location, and other variables
for consistent retrieval and storage across devices. Furthermore,
when the database was updated with things such as a new mission
or a mission’s termination, it then was able to call a method on the
hive back end application, which then either deployed a drone or
called a drone back respectively. For the recording requirement, AZ
Screen Recorder was used on the back end application. This was a
design choice made due to the fact that the back end application
temporarily will go to sleep to allow for the drone to catch up with
the code, and we thus didn’t want the video stream to splutter
with the sleeping of the app itself. Thankfully, AZ Screen Recorder
not only stored the drone operator footage as a file, but it also
functioned as a streaming service for this video to the user’s phone
directly. Together, these two tools accomplished everything that
required a direct connection between the user’s phone and the
drone, and then more.

4.2 Automated Deployment
To accomplish the automated deployment, two separate tools were
used once again. First, we have the DJI SDK, which provided much
of the backbone for the development of this feature through their
provided methods. Furthermore, it provided things like obstacle
avoidance and flight controls already built in. To pilot the drone, we
took the location provided by the second tool, the Firebase database,
for the user’s current location, and built a waypoint mission which
consisted of the midway point between the deployment location
and the user’s location, as well as the destination itself. This way-
point mission, which was then uploaded to the drone, allowed it to
navigate easily to the user to prepare for monitoring.

4.3 Maintaining Position by User
The task of maintaining focus on the user was by far the most
difficult to accomplish, which is why, given the time allotted for this
project, we were not able to fully complete it, despite investigating
several ways to implement this feature. Before going over those
ways, it should be first stated that the drone’s WiFi capabilities are
disabled in R/C mode, which is used for the mission execution. It
became apparent that WiFi is required for any significant range for
the drone, beyond the additional constraints. The first mission we
attempted to program was a "Follow Me" mission, which allows
the drone to follow a GPS signal, but as we learned this signal
is limited to the one from the R/C controller itself, and so this
mission was not practical for our purposes. The second mission
attempted was the waypoint mission, which we were already using
to navigate to the user. However, waypoints can’t be added in real
time during flight to account for the user’s movement, meaning we
would have to cancel the mission, send the drone back to the hive,
and then resend the drone back to the user’s new location, which
isn’t a feasible execution plan for our purposes. The third and final
mission considered was the "Active Track" mission. This mission
wouldn’t require GPS signals, but it would require selecting the
user on the deployment device’s screen or detecting user actions
on the camera. This could have been overcome with more time, but
would likely require intercepting and interpreting the raw drone
stream data. Given more time to accomplish this task, we would
have pursued the "Active Track" mission more thoroughly to allow
us to follow the user even if they were moving at higher speeds
than basic walking.

5 EXPERIMENT SETUP
System evaluation was based on the completion of the drones’
primary objective in 3 different scenarios.

5.1 Primary Objective Definition
The primary objective was defined as the drone, in an automated
manner, successfully deployed upon request, positioned itself within
the goal cylinder, and tracked the user until either the user sent
the dismiss command or the drone’s energy supply was depleted.
A successful rapid deployment was defined by the drone taking no
longer than the expected travel time to the location plus the average
time to target lock with a tolerance of 10%. The goal cylinder was
defined as a right circular cylinder described by the location of
the user where the user’s longitudinal axis defined the cylinder’s

Safe Swarm Mobile Computing, ,

central vertical axis. The goal cylinder consists of 3 parameters, the
radius from the user, the maximum altitude bound, and minimum
altitude bound. The three scenarios we consider are described in
sections 5.2, 5.3, and 5.4.

5.2 Static Target Scenario
In the static target scenario, we considered the unmoving user
standing at a distance of 100 meters from the point of deployment.
Both the user and deployment point were at approximately the
same elevation. There were no obstacles within the shortest path
between the drone and the user. In this scenario, the goal cylinder
was defined by a radius of 1.85 meters, a maximum bound of 8
meters and minimum bound of 6 meters. We evaluated the drone’s
performance based on its successful completion of the primary
objective as defined in section 5.1 and the drone’s ability to maintain
its position for up to 60 seconds.

5.3 Low Velocity Dynamic Target Scenario
In the low velocity dynamic target scenario, we considered the
moving user at an average adult walking pace of approximately
5.0 kilometers per hour. Initial conditions were similar to the static
scenario in 5.2 in that the altitudewas approximately the same as the
user’s upon deployment and there were no obstacles between the
user and the drone. We defined the goal cylinder to have a radius of
2 meters, a maximum bound of 9 meters and minimum of 6 meters.
A successful execution of this scenario required completion of the
primary objective, in addition to the following. The drone must
track the target continuously for a minimum of 60 seconds while
the target started and stopped moving and took a minimum of eight
90 degree turns, with at least two left turns and right turns.

5.4 High Velocity Dynamic Target Scenario
In the high velocity dynamic target scenario, we considered the
moving user at an average adult running pace of approximately
16 kilometers per hour. Initial conditions were again similar to
scenarios 5.2 and 5.3, however the user was in movement at the
time of deployment. In this scenario, we defined the goal cylinder
to have a radius of 2.5 meters, a maximum bound of 10 meters and
a minimum bound of 6 meters. In addition to the primary objective,
the drone must have tracked the target continuously from the time
of initial target lock for 60 seconds. The user’s path contained no
less than four 90 degree turns consisting of at least one left and
right turn.

5.5 Target Metrics
During the three testing scenarios, we used a custom scoring rubric
out of 80 points defined as follows.

(1) One point for each second that the drone maintained target
lock within the goal cylinder, up to sixty points.

(2) Ten points for a successful rapid deployment.
(3) Ten points for a successful deployment termination, which

is defined as returning to the point of deployment when its
primary objective is complete.

5.6 Experiment Results
The final tests for this project were done at Iowa City Aerohawks
corresponding to the criteria described in section 5. The results are
as followed.

Table 1: Static Target Testing Results

Deployment 10
Retrieval 10

Goal Cylinder (Out of 60 seconds) 60
Total (Out of 80) 80

Table 2: Low Velocity Dynamic Target Testing Results

Deployment 10
Retrieval 10

Goal Cylinder (Out of 60 seconds) 20
Total (Out of 80) 40

Table 3: High Velocity Dynamic Target Testing Results

Deployment 10
Retrieval 10

Goal Cylinder (Out of 60 seconds) 10
Total (Out of 80) 30

While these results in the low velocity dynamic target (Table 2)
and high velocity dynamic target (Table 3) scenarios were less than
we anticipated, we can attribute this to, as previously stated, a lack
of time to properly implement the active track feature. In the static
target scenario (Table 1), the drone gave a perfect performance,
managing to keep focused on the user due to the lack of movement.
As a result, in cases where the user would be waiting where they
are, such as waiting for a ride to arrive, the SafeSwarm drones
would successfully meet their requirements.

5.7 Demonstration
For the sake of documenting the results of these experiments, video
footage was taken throughout the process, focusing on the static
target scenario in section 5.2. This footage can be viewed on the
playlist provided:

youtube.com/playlist?list=PLRLtuTuDXS0wuWsrjO7J-dApJiVMe8Ff4

6 LESSONS LEARNED
While we were not successful in all of our goals, we believe that we
learned many lessons that will help us grow as computer scientists.

6.1 Asynchronous Programming
Due to the nature of the project, we were attempting to write
an imperative program, but the methods in the proprietary SDK
required exclusively asynchronous function calls, while also being
a bit buggy themselves. After trying many times to brute force

Mobile Computing, , Heather Kemp, Theo Linnemann, and Yusuf Sermet

our way through this way of programming, we realized that we
had to generalize the problem, which allowed us to implement a
"call-and-wait" style of execution for nondeterministic functions. In
this way, while it was not strictly imperative, we could guarantee
that the required parts of the code were executed before a future
method was called.

6.2 Logistics and Tooling
In order to properly work with this project, an adequate amount
of work was done in familiarizing ourselves with different ways
for testing. For example, non-trivial amounts of time were spent
on figuring out how to get wireless debugging working, as we
were unable to keep the phone plugged in to the laptop for console
logging. Furthermore, when it came to the design of the actual
tests themselves, our flight time was primarily constrained by the
early winter sunsets, and by having only one person with an LTE
enabled Android device, we would have to perform each part of
the summoning step separately rather than simultaneously. In the
future, as we now know these types of problems that will occur, we
will be able to take precautionary actions ahead of time to prevent
losing valuable project time.

6.3 Documentation Clarity
When it came to the documentation for automatic drone deploy-
ment and user tracking, information was sparse at best. We came to
realize that we wouldn’t find resources for exactly what we wanted
to know, and so we ended up assimilating parts from almost every
DJI tutorial manually to automate flight control. By doing this task,
we learned not only how to compile resources for a difficult task, but
also that sometimes you need to work with many different sources
before you find the information that you will need, especially for
an uncommon topic in academia like drone deployment.

6.4 Version Compatibility Issues
The basic DJI SDK integration for the drone was challenging by
itself, as it was not kept up to date perfectly with the latest version
of the Android SDK. To accommodate for this fact, we had to learn
some advanced techniques for managing and forcing the use of
correct dependencies to even proceed with development.

7 CONCLUSION
At the end of this project, it became apparent that our goal, while
simple in theory, was much loftier than anticipated. The scope of
the challenges were more significant and there were additional con-
straints that we had not previously recognized. By working through
the challenges documented, we learned an immense amount and
successfully implemented a majority of our functional components.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Challenges
	3.1 Missing Direct Connection
	3.2 Automated Deployment
	3.3 Maintaining Position by User

	4 Approach
	4.1 Missing Direct Connection
	4.2 Automated Deployment
	4.3 Maintaining Position by User

	5 Experiment Setup
	5.1 Primary Objective Definition
	5.2 Static Target Scenario
	5.3 Low Velocity Dynamic Target Scenario
	5.4 High Velocity Dynamic Target Scenario
	5.5 Target Metrics
	5.6 Experiment Results
	5.7 Demonstration

	6 Lessons Learned
	6.1 Asynchronous Programming
	6.2 Logistics and Tooling
	6.3 Documentation Clarity
	6.4 Version Compatibility Issues

	7 Conclusion

